You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
281 lines
8.2 KiB
281 lines
8.2 KiB
2 years ago
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"The Markdown parser included in the Jupyter Notebook is MathJax-aware. This means that you can freely mix in mathematical expressions using the [MathJax subset of Tex and LaTeX](https://docs.mathjax.org/en/latest/input/tex/). [Some examples from the MathJax demos site](https://mathjax.github.io/MathJax-demos-web/) are reproduced below, as well as the Markdown+TeX source."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Motivating Examples\n",
|
||
|
"\n",
|
||
|
"## The Lorenz Equations\n",
|
||
|
"### Source\n",
|
||
|
"```\n",
|
||
|
"\\begin{align}\n",
|
||
|
"\\dot{x} & = \\sigma(y-x) \\\\\n",
|
||
|
"\\dot{y} & = \\rho x - y - xz \\\\\n",
|
||
|
"\\dot{z} & = -\\beta z + xy\n",
|
||
|
"\\end{align}\n",
|
||
|
"```\n",
|
||
|
"### Display\n",
|
||
|
"\n",
|
||
|
"$\\begin{align}\n",
|
||
|
"\\dot{x} & = \\sigma(y-x) \\\\\n",
|
||
|
"\\dot{y} & = \\rho x - y - xz \\\\\n",
|
||
|
"\\dot{z} & = -\\beta z + xy\n",
|
||
|
"\\end{align}$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## The Cauchy-Schwarz Inequality\n",
|
||
|
"### Source\n",
|
||
|
"```\n",
|
||
|
"\\begin{equation*}\n",
|
||
|
"\\left( \\sum_{k=1}^n a_k b_k \\right)^2 \\leq \\left( \\sum_{k=1}^n a_k^2 \\right) \\left( \\sum_{k=1}^n b_k^2 \\right)\n",
|
||
|
"\\end{equation*}\n",
|
||
|
"```\n",
|
||
|
"### Display\n",
|
||
|
"\n",
|
||
|
"$\\begin{equation*}\n",
|
||
|
"\\left( \\sum_{k=1}^n a_k b_k \\right)^2 \\leq \\left( \\sum_{k=1}^n a_k^2 \\right) \\left( \\sum_{k=1}^n b_k^2 \\right)\n",
|
||
|
"\\end{equation*}$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## A Cross Product Formula\n",
|
||
|
"### Source\n",
|
||
|
"```\n",
|
||
|
"\\begin{equation*}\n",
|
||
|
"\\mathbf{V}_1 \\times \\mathbf{V}_2 = \\begin{vmatrix}\n",
|
||
|
"\\mathbf{i} & \\mathbf{j} & \\mathbf{k} \\\\\n",
|
||
|
"\\frac{\\partial X}{\\partial u} & \\frac{\\partial Y}{\\partial u} & 0 \\\\\n",
|
||
|
"\\frac{\\partial X}{\\partial v} & \\frac{\\partial Y}{\\partial v} & 0\n",
|
||
|
"\\end{vmatrix} \n",
|
||
|
"\\end{equation*}\n",
|
||
|
"```\n",
|
||
|
"### Display\n",
|
||
|
"\n",
|
||
|
"$\\begin{equation*}\n",
|
||
|
"\\mathbf{V}_1 \\times \\mathbf{V}_2 = \\begin{vmatrix}\n",
|
||
|
"\\mathbf{i} & \\mathbf{j} & \\mathbf{k} \\\\\n",
|
||
|
"\\frac{\\partial X}{\\partial u} & \\frac{\\partial Y}{\\partial u} & 0 \\\\\n",
|
||
|
"\\frac{\\partial X}{\\partial v} & \\frac{\\partial Y}{\\partial v} & 0\n",
|
||
|
"\\end{vmatrix} \n",
|
||
|
"\\end{equation*}$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## The probability of getting \\(k\\) heads when flipping \\(n\\) coins is\n",
|
||
|
"### Source\n",
|
||
|
"```\n",
|
||
|
"\\begin{equation*}\n",
|
||
|
"P(E) = {n \\choose k} p^k (1-p)^{ n-k} \n",
|
||
|
"\\end{equation*}\n",
|
||
|
"```\n",
|
||
|
"### Display\n",
|
||
|
"\n",
|
||
|
"$\\begin{equation*}\n",
|
||
|
"P(E) = {n \\choose k} p^k (1-p)^{ n-k} \n",
|
||
|
"\\end{equation*}$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## An Identity of Ramanujan\n",
|
||
|
"### Source\n",
|
||
|
"```\n",
|
||
|
"\\begin{equation*}\n",
|
||
|
"\\frac{1}{\\Bigl(\\sqrt{\\phi \\sqrt{5}}-\\phi\\Bigr) e^{\\frac25 \\pi}} =\n",
|
||
|
"1+\\frac{e^{-2\\pi}} {1+\\frac{e^{-4\\pi}} {1+\\frac{e^{-6\\pi}}\n",
|
||
|
"{1+\\frac{e^{-8\\pi}} {1+\\ldots} } } } \n",
|
||
|
"\\end{equation*}\n",
|
||
|
"```\n",
|
||
|
"### Display\n",
|
||
|
"$\\begin{equation*}\n",
|
||
|
"\\frac{1}{\\Bigl(\\sqrt{\\phi \\sqrt{5}}-\\phi\\Bigr) e^{\\frac25 \\pi}} =\n",
|
||
|
"1+\\frac{e^{-2\\pi}} {1+\\frac{e^{-4\\pi}} {1+\\frac{e^{-6\\pi}}\n",
|
||
|
"{1+\\frac{e^{-8\\pi}} {1+\\ldots} } } } \n",
|
||
|
"\\end{equation*}$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## A Rogers-Ramanujan Identity\n",
|
||
|
"### Source\n",
|
||
|
"```\n",
|
||
|
"\\begin{equation*}\n",
|
||
|
"1 + \\frac{q^2}{(1-q)}+\\frac{q^6}{(1-q)(1-q^2)}+\\cdots =\n",
|
||
|
"\\prod_{j=0}^{\\infty}\\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},\n",
|
||
|
"\\quad\\quad \\text{for $|q|<1$}. \n",
|
||
|
"\\end{equation*}\n",
|
||
|
"```\n",
|
||
|
"### Display\n",
|
||
|
"\n",
|
||
|
"$$\\begin{equation*}\n",
|
||
|
"1 + \\frac{q^2}{(1-q)}+\\frac{q^6}{(1-q)(1-q^2)}+\\cdots =\n",
|
||
|
"\\prod_{j=0}^{\\infty}\\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},\n",
|
||
|
"\\quad\\quad \\text{for $|q|<1$}. \n",
|
||
|
"\\end{equation*}$$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Maxwell's Equations\n",
|
||
|
"### Source\n",
|
||
|
"```\n",
|
||
|
"\\begin{align}\n",
|
||
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\ \\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
||
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
||
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n",
|
||
|
"\\end{align}\n",
|
||
|
"```\n",
|
||
|
"### Display\n",
|
||
|
"\n",
|
||
|
"$\\begin{align}\n",
|
||
|
"\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\ \\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
|
||
|
"\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
|
||
|
"\\nabla \\cdot \\vec{\\mathbf{B}} & = 0 \n",
|
||
|
"\\end{align}$"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Equation Numbering and References\n",
|
||
|
"\n",
|
||
|
"Equation numbering and referencing will be available in a future version of the Jupyter notebook."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Inline Typesetting (Mixing Markdown and TeX)\n",
|
||
|
"\n",
|
||
|
"While display equations look good for a page of samples, the ability to mix math and *formatted* **text** in a paragraph is also important.\n",
|
||
|
"\n",
|
||
|
"### Source\n",
|
||
|
"```\n",
|
||
|
"This expression $\\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a [Markdown-formatted](https://daringfireball.net/projects/markdown/) sentence. \n",
|
||
|
"```\n",
|
||
|
"\n",
|
||
|
"### Display\n",
|
||
|
"This expression $\\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a [Markdown-formatted](https://daringfireball.net/projects/markdown/) sentence. "
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Other Syntax\n",
|
||
|
"\n",
|
||
|
"You will notice in other places on the web that `$$` are needed explicitly to begin and end MathJax typesetting. This is **not** required if you will be using TeX environments, but the Jupyter notebook will accept this syntax on legacy notebooks. \n",
|
||
|
"\n",
|
||
|
"## Source\n",
|
||
|
"\n",
|
||
|
"```\n",
|
||
|
"$$\n",
|
||
|
"\\begin{array}{c}\n",
|
||
|
"y_1 \\\\\\\n",
|
||
|
"y_2 \\mathtt{t}_i \\\\\\\n",
|
||
|
"z_{3,4}\n",
|
||
|
"\\end{array}\n",
|
||
|
"$$\n",
|
||
|
"```\n",
|
||
|
"\n",
|
||
|
"```\n",
|
||
|
"$$\n",
|
||
|
"\\begin{array}{c}\n",
|
||
|
"y_1 \\cr\n",
|
||
|
"y_2 \\mathtt{t}_i \\cr\n",
|
||
|
"y_{3}\n",
|
||
|
"\\end{array}\n",
|
||
|
"$$\n",
|
||
|
"```\n",
|
||
|
"\n",
|
||
|
"```\n",
|
||
|
"$$\\begin{eqnarray} \n",
|
||
|
"x' &=& &x \\sin\\phi &+& z \\cos\\phi \\\\\n",
|
||
|
"z' &=& - &x \\cos\\phi &+& z \\sin\\phi \\\\\n",
|
||
|
"\\end{eqnarray}$$\n",
|
||
|
"```\n",
|
||
|
"\n",
|
||
|
"```\n",
|
||
|
"$$\n",
|
||
|
"x=4\n",
|
||
|
"$$\n",
|
||
|
"```\n",
|
||
|
"\n",
|
||
|
"## Display\n",
|
||
|
"\n",
|
||
|
"$$\n",
|
||
|
"\\begin{array}{c}\n",
|
||
|
"y_1 \\\\\\\n",
|
||
|
"y_2 \\mathtt{t}_i \\\\\\\n",
|
||
|
"z_{3,4}\n",
|
||
|
"\\end{array}\n",
|
||
|
"$$\n",
|
||
|
"\n",
|
||
|
"$$\n",
|
||
|
"\\begin{array}{c}\n",
|
||
|
"y_1 \\cr\n",
|
||
|
"y_2 \\mathtt{t}_i \\cr\n",
|
||
|
"y_{3}\n",
|
||
|
"\\end{array}\n",
|
||
|
"$$\n",
|
||
|
"\n",
|
||
|
"$$\\begin{eqnarray} \n",
|
||
|
"x' &=& &x \\sin\\phi &+& z \\cos\\phi \\\\\n",
|
||
|
"z' &=& - &x \\cos\\phi &+& z \\sin\\phi \\\\\n",
|
||
|
"\\end{eqnarray}$$\n",
|
||
|
"\n",
|
||
|
"$$\n",
|
||
|
"x=4\n",
|
||
|
"$$"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.7.3"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 1
|
||
|
}
|